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Abstract15

Models developed to geolocate individual fish from data recorded by electronic tags often16

require significant modification to be applied to new regions, species, or tag types due to17

variability in oceanographic conditions, fish behavior, and data resolution. We developed18

a model for geolocating Atlantic cod o↵ New England that builds upon an existing hidden19

Markov model (HMM) framework and addresses region- and species-specific challenges. The20

HMM framework contains a likelihood model which compares tag-recorded environmental21

data (depth, temperature, tidal characteristics) with those derived from an oceanographic22

model and a behavior model which constrains the horizontal movement of the fish. Valida-23

tion experiments were performed on stationary tags, double-electronic-tagged fish (archival24

and acoustic tags), and simulated tracks. Known data, including fish locations and activ-25

ity metrics, showed good agreement with those estimated by the modified approach, and26

improvements in performance of the modified method over the original. The modified ge-27

olocation approach will be applicable to additional species and regions to obtain valuable28

movement information that is not typically available for demersal fishes.29

30

Key words: geolocation, hidden Markov model, fish migration, Atlantic cod,31

Gadus morhua, data storage tags32
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Introduction33

The population structure of many fishery resources is more complex than the homogeneous34

units that are typically assumed in stock assessments and fishery management (Cadrin and35

Secor 2009). Recent research has increasingly focused on developing methods for incorpo-36

rating complex population structures. In order to incorporate these spatial processes into37

stock assessment models and fishery management plans, it is essential to have a proper un-38

derstanding of the movement of the species (Cadrin and Secor 2009; Goethel et al. 2011).39

The most common approach to studying movement of marine fish has been mark-recapture40

studies with conventional tags (Hall 2014). Conventional tags can provide information on41

general movements, but are not well suited for understanding behavioral patterns because42

they do not always reliably inform the trajectory of movement from release to recapture43

locations. In addition, conventional tagging typically relies on fishery-dependent recaptures,44

which can be biased by reporting rates and the distribution of fishing e↵ort (Bolle et al.45

2005).46

To address these limitations, geolocation methods have been developed to utilize elec-47

tronic tagging data to provide information about fish movements, distribution and behavior48

by estimating daily positions while fish are at liberty. Geolocation estimates are based on49

comparison of environmental data acquired from electronic tags (e.g., temperature, pressure)50

with regional environmental databases (Evans and Arnold 2009). Geolocation methods have51

primarily utilized environmental data from recovered archival data storage tags (DSTs),52

including temperature, salinity, pressure (depth), and tidal data (amplitude/phase, tidal53

range/time of high water) (Arnold and Dewar 2001; Galuardi and Lam 2014), and these54
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methods have been applied to demersal groundfish. Alternative approaches based on light55

as well as satellite-based geolocation have been used for pelagic fishes and marine mammals56

(Arnold and Dewar 2001; Block et al. 2011; Pedersen et al. 2011a), but are not applicable57

to benthic species due to attenuation of these signals in the water column.58

Prior work in the geolocation of demersal fish can be categorized into two fundamental59

approaches: algorithmic methods and State Space Models (SSMs). In the algorithmic class60

of schemes (e.g. Hunter et al. 2003; Gröger et al. 2007; Neuenfeldt et al. 2007), positions at61

each time step (e.g. daily) are determined using a direct comparison of the environmental62

data recorded by the DST with data derived from regional observations or an oceanographic63

model. Algorithmic approaches lack the intrinsic ability to quantify uncertainty, which is a64

significant drawback given the potential for location errors to arise from noisy observations65

and environmental data (Patterson et al. 2008; Thygesen et al. 2009). In addition, a robust66

behavior model is often absent in algorithmic methods and conservative assumptions such67

as swimming speed constraints are instead applied. In contrast, state space models are68

statistical frameworks that can infer a series of state variables that are not directly measured,69

based on a series of observations that are conditioned on these unknown states. In the context70

of marine fish geolocation, the unknown states represent geographical locations of marine71

fish and the observation series is data recorded by DSTs (Patterson et al. 2008; Jonsen et al.72

2013). Approaches based on state space models are largely able to overcome the drawbacks73

of algorithmic methods, because the uncertainty associated with the geolocations can be74

estimated, and a movement model describing the fish movement processes can be fit with75

observed data (Jonsen et al. 2013; Winship et al. 2012).76

An important geolocation methodology based on the state space model framework is the77
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hidden Markov model (HMM)(Pedersen et al. 2008, 2011a). The HMM is a form of state78

space model that deals with discrete states. In HMM, the estimation of the geographical79

location x is explicitly represented by a probability density function �(x, t). In each time80

step, the observation is dependent on the corresponding hidden state. Such dependency81

can be described by a likelihood model, represented by probability density functions con-82

structed by comparing environmental data recorded by the tag with those from a model83

(e.g., twilight light level model for light-based methods, oceanographic model for tidal- or84

depth/temperature-based methods). The hidden state sequence is a Markov chain bearing85

the assumption that the state at each time is dependent on the state at the previous time.86

Such dependency can be described by the behavior model. The output of an HMM is the es-87

timated hidden time series of geographical locations and the associated posterior probability88

distribution functions.89

The HMM method has been applied to the geolocation of Atlantic cod (Gadus morhua)90

in multiple regions (e.g., North Sea (Pedersen et al. 2008; Thygesen et al. 2009), Gulf of St.91

Lawrence (Le Bris et al. 2013a,b), Iceland (Thorsteinsson et al. 2012)), as well as European92

seabass (Dicentrarchus labrax ) along the west coast of France (Woillez et al. 2016). These93

e↵orts all used an open source MATLAB-based HMM geolocation toolbox developed by94

Pedersen (2008) (hereafter referred to as HGT), which is an implementation of a full HMM95

geolocation model. The kernel of HGT uses Bayes’ theorem to calculate the normalized96

conditional probability distribution � by performing a “time update” and an “observation97

update” during each timestep (Thygesen et al. 2009). Construction of �(x, t) enables the98

calculation of the most probable track (MPT). All Bayesian calculations in HGT are con-99

ducted on a regular orthogonal grid in a geographic coordinate system with a fixed spatial100
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resolution.101

A key challenge in the development of toolboxes such as HGT stems from the di�culty of102

generalizing the approach. For region- and species-specific applications of HMM geolocation,103

such models need careful calibration with available datasets. Environmental variables with104

the greatest spatial heterogeneity are most e↵ective for geolocation. Therefore, the vari-105

ables that are most useful for geolocation frequently vary by region. For example, previous106

groundfish geolocation e↵orts utilized di↵erent environmental variables such as tidal data107

in the North Sea (Metcalfe and Arnold 1997; Hunter et al. 2003, 2004; Wright et al. 2006;108

Thorsteinsson et al. 2012), depth and salinity in the Baltic Sea (Neuenfeldt et al. 2007), and109

depth and temperature in Gulf of St. Lawrence (Le Bris et al. 2013a,b) to help distinguish110

between horizontal locations.111

Assessing the quality of position estimates is a key component to the development of new112

geolocation techniques. Previous studies have assessed the accuracy of DST-based geoloca-113

tion using various approaches. One straightforward method is to compare the environmental114

parameters (e.g., temperature, depth) measured by the tag with those estimated from the115

geolocated track (Neuenfeldt et al. 2007). However, a track whose corresponding environ-116

mental data matches the tag-measured values is not always biologically realistic (Brickman117

and Thorsteinsson 2008). Another approach to quantifying the accuracy of the track is118

to compare the estimated and true recapture location (Hunter et al. 2003). However, the119

premise of this method is the exclusion of the known recapture location from use in the120

geolocation process. Such exclusion may compromise the quality of the geolocation results,121

because the recapture location is a critical piece of information, especially for state space122

model-based methodologies with backward smoothing steps that propagate the recapture123
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location information back to the whole time series. Other previous validation methods in-124

clude geolocating DSTs moored on the bottom at fixed locations using tidal data (Hunter125

et al. 2003; Thorsteinsson et al. 2012), double-tagging the free swimming fish with two dif-126

ferent type of electronic tags (Teo et al. 2004; Winship et al. 2012), and generating known127

movement tracks of virtual fish using simulation (Righton and Mills 2008). None of these128

approaches has been applied to state space model-based geolocation methodologies using129

depth and temperature data recorded by DSTs.130

In the present work, we focus on the geolocation of Atlantic cod tagged with DSTs o↵131

New England, USA. Atlantic cod are an economically-important groundfish species for New132

England fisheries and many prior conventional tagging studies have been conducted (Hunt133

et al. 1999; Howell et al. 2008; Tallack 2011; Loehrke 2013). However, uncertainties remain134

with respect to cod behavior, movements, and stock structure, including the connectivity135

among subpopulations(Zemeckis et al. 2014b). In order to utilize HGT for the geolocation,136

several modifications are necessary. Firstly, due to inadequate spatial contrast in tidal char-137

acteristics in the western Gulf of Maine, the full tidal-based likelihood model in HGT must138

be modified to use other environmental variables. Secondly, as identified by Pedersen (2007),139

the land treatment in the HGT behavior model simply masks out cells that represent land,140

which potentially allows a fish to cross land. This is especially problematic in our region of141

interest due to the presence Cape Cod, a narrow and elongated land feature (Fig. 1). Mod-142

ifications of the HMM methods in HGT were aimed at improving its performance for the143

current application, with consideration of also making it better suited for geolocating other144

groundfish species in the Gulf of Maine as well as other geographical areas. To achieve this145

objective, we made methodological contributions to the HMM geolocation package including146
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incorporation of a depth- and temperature-based likelihood model with tidal-based exclusion147

in the HMM framework, and employed quantitative error assessment of the geolocation re-148

sults using multiple approaches, including stationary mooring tags, double-electronic-tagged149

fish, and simulated tracks.150

Materials and Methods151

Archival tagging152

As part of an interdisciplinary study, Atlantic cod were tagged with DSTs from 2010 through153

2012 in the Spring Cod Conservation Zone (SCCZ, Fig. 1) (Dean et al. 2014; Zemeckis et al.154

2014a; Zemeckis 2016), which is a seasonal spawning closure in northern Massachusetts Bay155

in the western Gulf of Maine (Armstrong et al. 2013). The DSTs deployed on a total of156

266 Atlantic cod were Star-ODDI milli-L tags (39.4 mm ⇥ 13 mm, depth range 1–250 m;157

Star-ODDI Ltd., Reykjavik, Iceland). From these studies, a total of 49 DSTs were recovered158

from recaptured fish with data suitable for geolocation. The resolution and accuracy of159

pressure (depth) measurements was 0.03% and ± 0.8% of the calibrated depth range (1-160

250 m), respectively. The resolution of temperature measurements was 0.032 �C and the161

accuracy was ± 0.1 �C. The DSTs were programmed to record pressure and temperature162

measurements every 15 min and 2 h 45 min, respectively. To be consistent with depth data,163

temperature data were later interpolated to 15 min intervals using cubic spline interpolation164

(Trauth et al. 2007). Locations of release and recapture of tagged fish were also recorded.165

Each recapture location was assigned an uncertainty level of low (15 km) or moderate (30166
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km) based on the type of fishing gear (i.e. fixed or mobile) used to capture the tagged fish167

and the reliability of the positions based on the reported format (GPS coordinates, LORAN168

coordinates, or descriptive locations with reference to landmarks). Uncertainty was greater169

(moderate) for fish caught in mobile trawl gear due to the average tow distance by trawlers170

targeting cod in the Gulf of Maine (15.8 ± 9.3 km) and for reported recaptures that were171

not in GPS format and therefore less precise.172

To provide an independent set of location estimates of better accuracy as a means of val-173

idating geolocation results, the DST recaptures included ten fish that also had a surgically-174

implanted Vemco V16P-6H coded acoustic transmitter (Vemco Division, AMIRIX Systems,175

Inc., Nova Scotia, Canada) (Zemeckis et al. 2014a). These double-electronic-tagged cod were176

in spawning condition when released (Dean et al. 2014). Between 2010–2014, acoustic re-177

ceiver arrays were deployed to monitor cod spawning activity, including a Vemco Positioning178

System (VPS) in the cod conservation zone (see Fig. 2 in Dean et al. 2014) and acoustic179

receivers on both Eagle Ridge in Massachusetts Bay (⇠15 km south of the cod conservation180

zone) and Whaleback in Ipswich Bay (⇠45 km north of the cod conservation zone) (Zemeckis181

2016). The positioning system in the cod conservation zone covered 9.5 km2 and was able to182

determine horizontal positions with <10 m of error (Dean et al. 2014). In addition, acoustic183

receivers were deployed in Massachusetts Bay and o↵ Cape Ann to monitor the movements184

of striped bass (Morone saxatillis) with the maximum detection range estimated at ⇠1 km185

(see Fig. 1 in Kneebone et al. 2014).186
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Oceanographic model environmental data187

We used bottom water temperature and bathymetry data from the Northeast Coastal Ocean188

Forecasting System (Beardsley et al. 2013; NECOFS 2013), which is based on the unstruc-189

tured grid Finite-Volume Community Ocean Model (FVCOM) (Chen et al. 2006; Cowles190

et al. 2008). The NECOFS domain includes the entirety of the Gulf of Maine, Georges191

Bank, and the New England Shelf (Fig. 1), which covers all locations where cod from the192

western Gulf of Maine would be expected to be found based on observations from previous193

conventional tagging studies. The model mesh contains 90,415 elements in the horizontal194

grid and 45 vertical layers. The horizontal resolution ranges from 5 km near the open bound-195

ary to 500 m along the coast and tidal mixing fronts. The model is forced with hydrography196

and sea surface height at the open boundary, buoyancy flux from the major regional rivers,197

and wind stress and heat flux derived from regional hindcasts of the Weather Research and198

Forecasting (WRF) model. Observed data from moored arrays and sea surface tempera-199

ture are assimilated into the hindcasts. Model bathymetry is based on the regional USGS200

3-arcsec data product (Twomey and Signell 2013). NECOFS was hindcast for the period201

1978–present and hydrographic data, velocity, and sea surface height were archived at hourly202

intervals. For tidal information the eight primary regional constituents (M2, N2, S2, O1, K1,203

K2, P1, and Q1) were derived using harmonic analysis from a barotropic setup of NECOFS204

used to simulate regional tides. In comparison with data from 98 sea surface gauges, the205

standard deviation for the model-data di↵erence of the M2 tidal constituent is 3.21 cm (Chen206

et al. 2011).207

The NECOFS bottom water temperature is a critical component of the present geoloca-208
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tion e↵ort. To assess the skill, model-computed bottom temperatures were compared with in209

situ measurements collected during multiple field surveys carried out between 2003 and 2015210

(Table 1). A total of 29,501 data points of measurements that are within the NECOFS model211

domain cover the Gulf of Maine, Georges Bank, Southern New England and Mid Atlantic212

Bight, and have not been assimilated to NECOFS. The overall mean of the model-observation213

di↵erence was �0.04 �C and the overall RMSE was 1.61 �C. The model-observation discrep-214

ancies did not exhibit significant seasonal or regional variation within the Gulf of Maine.215

Based on data from NECOFS, a typical range of bottom temperature across the Gulf of216

Maine and Georges Bank is approximately 7 �C, a variation which is large compared to217

the NECOFS bottom temperature error. Following Willmott (1981), the NECOFS bottom218

temperature data was also examined using the non-dimensional metric:219

W
s

= 1�
P

|T
mo

� T
me

|2
P

(|T
mo

� T
me

|+ |T
me

� T
me

|)2
, (1)220

where T
me

is the bottom temperature measurements, T
mo

is the corresponding temperature221

from NECOFS, and the overbar denotes a mean. As opposed to the more broadly considered222

R2, the Willmott score is able to distinguish constant or proportional o↵set between the two223

variables (Willmott 1981), and is commonly used in oceanographic model skill assessment224

studies (e.g. Warner et al. 2005; Wilkin 2006; O’Donncha et al. 2015). The skill score W
s

225

has a range of 0–1, with 1 indicating perfect agreement between model and measurement226

and 0 indicating complete disagreement. For this comparison the skill value was 0.925,227

demonstrating strong agreement. In conclusion, the NECOFS bottom temperature data is228

generally appropriate for application to regional geolocation.229
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Hidden Markov model design230

Geolocations for double-electronic-tagged cod were initially estimated using the original HGT231

which required only minor modification to work with NECOFS bathymetry and tidal data.232

These tracks were validated by comparison against acoustic telemetry data which provided233

known positions while the cod were at liberty (Supplementary Material). This study indi-234

cated that the accuracy of position estimates for the cod provided by the original HGT were235

not satisfactory for studying seasonal movement patterns of cod (median error >30 km),236

due primarily to inadequate spatial contrast in tidal characteristics, fish activity levels, and237

regional oceanographic conditions. We sought to improve HGT for application in the Gulf238

of Maine region, and provide a mechanism for enhanced performance in other regions and239

with other species. Building on previous work that aimed at assigning daily positions to240

statistical areas based upon DST data (Zemeckis 2016), revisions were made to the likeli-241

hood model, behavior model, and the most probable track construction in HGT. The HMM242

framework from the original HGT was maintained to calculate the posterior daily probability243

distribution of the fish. The source code of the modified HMM geolocation toolbox (revised244

HGT) is available at https://github.com/cliu3/hmm_smast. The domain for all HMM245

calculations presented in this paper ranges from 71�W to 62�W and 40�N to 45�N, including246

most of the Gulf of Maine and Georges Bank at a resolution of 0.05� which is approximately247

equal to 4 km.248
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Likelihood model249

Likelihood distributions were derived using a comparison of depth, water temperature, and250

tidal information extracted from DSTs with the corresponding estimates from the oceano-251

graphic model. Daily likelihood distributions L(x̂), representing the probability of the ob-252

servation data given the discrete horizontal geographical location x̂, were constructed on the253

vertices of the unstructured grid of the oceanographic model. The approach considered the254

influence of temperature and depth separately from that of tides. Limited regional variation255

of the tidal characteristics in the western Gulf of Maine (Chen et al. 2011) reduces the utility256

of tides for geolocation. The M2 amplitude and phase may vary by only 0.25 m and 15�, re-257

spectively across a distance of 130 km. Additionally, o↵-bottom movement of fish can reduce258

or eliminate the ability to detect tide in the pressure signal. Considering these two factors,259

a geolocation method based solely on tidal information is not capable of producing su�cient260

accuracy in the Gulf of Maine for studying seasonal movement patterns of demersal fishes.261

Nonetheless, useful information may still be extracted from the tide signal. In the present262

work, an initial likelihood distribution L
dt

(x̂) was constructed using depth and temperature263

information. Tide, when available, was then used for eliminating unlikely regions in the final264

L(x̂) distribution.265

The specific parameterization of the likelihood function depends on the daily activity of266

each fish, which was categorized as low, medium, or high using pressure data from the DST.267

We employed the tidal fitting procedure of Pedersen (2007), which calculates the least-square268

fit of the depth signal with a sinusoidal wave. Days were categorized as low activity when269

there was a satisfactory fit over a 13 h window, moderate activity days were identified as270
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those with satisfactory fits when using a 5 h window, and high activity days were those271

during which there were no reliable tidal fits (Fig. 2). This classification is based on the272

assumption that longer tidal fit represents demersal behavior at a fixed location and depth,273

and therefore less horizontal movement. The criteria for goodness of fit for detection of tidal274

signal was strict (root mean square error (RMSE) < 0.35 m, R2 > 0.92, and tidal amplitude275

between 0.2 m and 2.0 m) to prevent false tidal fits which compromised estimates of tidal276

phase and therefore geographic position. In contrast, a more relaxed tidal fitting criteria was277

employed for identifying moderate activity periods (R2 > 0.85), because tidal characteristics278

were not used for geolocation on moderate activity days.279

Assuming that depth and temperature were independent, an initial likelihood distribution280

L
dt

(x̂) given the observed depth and temperature (z, T ) is obtained by forming the product281

of two integrated normal distributions (modified from Le Bris et al. 2013b):282

L
dt
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where �z and �T are the tag measurement error for depth and temperature, respectively,283

N(µ, �2) is a normal distribution function of mean µ and standard deviation �, and µ
z

and284

µ
T

are NECOFS depth and temperature. The standard deviations of bathymetry �
z

(x̂) and285

temperature �
T

(x̂) were determined using the NECOFS depth and temperature values from286

the neighboring vertices of x̂ on the unstructured grid. During low and moderate activity287

periods, z and T were established using the mean depth and temperature over the satisfac-288

tory tidal fit. Taking an average over the depth signal removes the sinusoidal tidal variation289
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and represents better the bathymetry of the fish’s location, whereas the mean temperature290

is an appropriate choice for comparison with the NECOFS daily-averaged bottom tempera-291

ture data. During high activity periods, the depth-based likelihood factor is replaced by a292

bathymetry uncertainty, after Pedersen (2007):293
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where � is the cumulative density function of a standard Gaussian distribution, z and T295

were set using the depth and temperature when the fish was at its maximum depth during296

the daily interval. This treatment is based on the constraint that the depth of the fish is297

always less than the local bathymetry and accounts for bathymetry uncertainty.298

When available, tidal information derived from tag data was used to eliminate unlikely299

locations from the initial likelihood distribution. During low activity periods, the tag tidal300

signal (⌘) was compared with tidal signals for the same period from the oceanographic model301

(⌘̂(x̂)) using the root-mean-square deviation (RMSD) of the two time series at each NECOFS302

grid point x̂:303

RMSD(x̂) =

vuut 1

n

nX

i=1

(⌘̂
i

(x̂)� ⌘
i

)2, (4)304

where n is the number of measurements in the 13-hour time series of the tide signal on a305

given day. The initial likelihood distribution L
dt

(x̂) was then preserved at grid points where306

two conditions were met: 1) the semi-diurnal amplitude of the tag signal A(⌘) is bounded by307

the amplitude of M2 minus that of the sum of the other seven tidal constituents AM2�⌃7(x̂)308

and the sum of all eight principal tidal constituents A⌃8(x̂) ; and 2) the RMSD was smaller309
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than a threshold value ⇥ which was the 30th percentile of the RMSD calculated for the310

remaining grid points. Implementation of the first condition avoids the computation e↵ort311

for reconstructing tidal signals (⌘̂) on grid points where the semi-diurnal amplitude clearly312

do not match that of the tag signal. In the second condition, the value of ⇥ was established313

using performance testing which found that it was able to eliminate obviously spurious314

position assignments. In addition, it also preserved L(x̂) within a fairly broad horizontal315

scale so that potential true positions do not get excluded. This scale was determined based316

on the observed error of the double-electronic-tagged cod using the original HGT. For grid317

points not meeting these two criteria, the likelihood was assigned a zero value (Fig. 3). In318

summary, the final likelihood distribution L(x̂) with tidal exclusion can be expressed as:319

L(x̂) = L
dt

(x̂)H(x̂), (5)320

where321

H(x̂) =

8
>>>>>>>>>><

>>>>>>>>>>:

1, RMSD(x̂)  ⇥

and A(⌘̂) 2 [AM2�7(x̂), A8(x̂)]

0, all other positions

. (6)322

For days when tidal information was insu�cient or absent from the tag data (i.e. during323

moderate or high activity), tidal exclusion was not employed:324

L(x̂) = L
dt

(x̂). (7)325
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Behavior model326

The behavior model describes the time evolution of the state variable, which is the daily327

movement of the fish. The horizontal movement of fish can be represented as a random walk328

(Sibert et al. 1999) which can be mathematically described using the Fokker-Planck di↵usion329

equation:330

@�

@t
= Dr2�, (8)331

where � is the probability density of the fish’s location and D is a constant di↵usivity332

coe�cient, which is related to the swimming speed of the fish. The discretization scheme of333

the di↵usion process was previously implemented in HGT following Thygesen et al. (2009),334

using a transition probability matrix representing an isotropic Gaussian kernel corresponding335

to the solution of Eq. 8. In this approach, the matrix is defined as H = (�
ij

), where element336

(i, j) represents a spatial location, and �
ij

represents the probability that the fish moves337

from the center element of H to element (i, j). The isotropic approach handles dry land338

by simply setting transition probabilities in these elements to zero (Thygesen et al. 2009;339

Pedersen et al. 2011a), allowing artificial crossing of fish from one side of a peninsula or other340

small scale land features to the other within a single time step. To prevent such infeasible341

results, the generation of the transition probability matrix was modified in the revised HGT.342

The transition probability matrix H was first initialized as an empty matrix, with elements343

representing land masked out. A breadth-first searching algorithm was then used to generate344

a distance field S = (s
ij

) of the same size as the transition probability matrix, with values345

equal to the shortest apparent distance from each element to the center element of the346

matrix around any masked-out obstacles. The values of the transition probability matrix �
ij

347
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were then reassigned by evaluating the original Gaussian function at values of the apparent348

distance field S. The e↵ect of this treatment near land is equivalent to that of a reflecting349

boundary condition.350

The behavior switching scheme described in Pedersen et al. (2008) which makes use of the351

activity level classification (Fig. 2) was also used in this work. A lower value of the di↵usivity352

coe�cient D was used for low and moderate activity days and a higher D for high activity353

days. The values of D can be specified as constant values or estimated using maximum354

likelihood estimation (MLE) (Pedersen et al. 2008). For simplicity and inclusiveness, in this355

study D was assigned constant values of 10 km2/d as the lower value and 100 km2/d as the356

higher value. This decision was based on the estimation of D from fish swimming speed357

presented by Pedersen (2007) considering the typical swimming speed of cod (Fernö et al.358

2011) and allowing for broader ranges of horizontal movement.359

Most probable track360

In the original HGT, the most probable track is one that maximizes the overall probability361

score of the whole sequence of locations using the Viterbi algorithm (Pedersen 2007; Thygesen362

et al. 2009), and the end point of the most probable track was set to be the grid cell where363

the value of the probability distribution � on recapture day is the greatest. We modified364

the approach to make sure the end point of the estimated MPT is close to the reported365

recapture location. The final point of the tag deployment was set to be the grid cell with366

the maximum � value among the cells that are within the uncertainty radius of the reported367

recapture location. This modification e↵ectively nudges the estimated location on the day368

of recapture to be within the uncertainty radius of the reported recapture location.369
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In summary, the original HGT consists of a tidal-based likelihood model, a spatially dis-370

cretized Gaussian behavior model with simple land treatment, and an MPT search scheme371

based on the Viterbi algorithm. Modifications made in the revised HGT include the utiliza-372

tion of tag-recorded depth and temperature and the exclusion of unlikely locations based373

on tidal characteristics for the likelihood model, the activity classification based on length374

of tidal signal detection, improved land treatment in the behavior model, and a method375

to constrain the end point of the most probable track to be near the reported recapture376

location.377

Validation experiments378

To examine the performance of the revised HGT, the method was applied to two classes of379

DST datasets (including depth and temperature) with known locations. The first, bottom-380

mooring tags, challenge the model to maintain a fixed position over time. The second381

class of dataset consists of double-electronic-tagged fish that provide known locations that382

enable direct quantification of model skill when they pass through acoustic receiver arrays.383

This second class is useful for providing confidence in the geolocation, because the data is384

obtained from the tagged fish. To examine whether the revised HGT improves geolocation385

performance, the performance of the original HGT was also assessed using these two classes386

of DST datasets for comparison.387

Another approach for validating the geolocation methodology is to assess the model’s388

ability to replicate simulated tracks. Data for these fish were generated by interpolating389

pressure and temperature from the oceanographic model onto artificially constructed tracks.390
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In this study, simulated fish tracks were generated to examine the e↵ect of season, region,391

and time at liberty on the accuracy of the geolocation results. The release positions were392

informed by the time and location of cod presence within the western Gulf of Maine inferred393

by recapture positions from conventional tag studies (Zemeckis 2016; Zemeckis et al. 2017).394

Movement tracks were simulated to occupy di↵erent regions (Gulf of Maine and Georges395

Bank) during two seasons (summer and winter) across a range of days at liberty (40 d, 120396

d, and 360 d)(Fig. 4). Daily locations for each track were generated using a random walk397

with the following equation:398

X

t+1 = X

t

+R
p
2D�t, (9)399

where X
t+1 and X

t

are locations in the simulated track on day t+1 and t, respectively, R is400

a random factor producing a standard normal distribution (zero mean and unit variance), D401

is the di↵usivity having a value of 10 km2/d or 100 km2/d, and �t = 1 d is the time interval.402

Simulated individuals were constrained to remain in the model domain. If an individual403

moved across land or open-ocean boundary during a time step t + 1, it was restored to404

its last position (from the previous time step X

t

). This boundary treatment method was405

chosen because of the ease of implementation within the unstructured mesh framework of406

NECOFS FVCOM. After the simulated track was generated, the corresponding depth and407

temperature time series were constructed at 15 min intervals using the tidal and bottom408

temperature data derived from the oceanographic model in order to create a simulated tag.409

No noise was added to the simulated depth and temperature signals. Ten simulation sets410

consisting of five runs each were performed. Each set was based on a unique combination411

of season, region, and time at liberty (Table 2). When performing geolocation using the412
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simulated data, release locations were used without uncertainty, while recapture location413

uncertainty was 15 km.414

Results415

Geolocation Model Validation416

To validate the activity characterization approach of the likelihood model, we compared the417

size of the daily 95% utilization distribution derived from VPS detection reported in (Dean418

et al. 2014) with the daily activity levels determined by the likelihood model. The median419

areas of the daily 95% utilization distribution were 0.038 km2 for the low activity days, 0.11420

km2 for the moderate activity days, and 0.26 km2 for the high activity days (Fig. 5). The421

relation between these two metrics shows a trend in which days classified as lower levels422

of activity based on vertical movements are those during which the fish utilized less space423

horizontally.424

A total of 14 Star-ODDI DSTs were moored to di↵erent fixed locations on cod spawning425

sites in Massachusetts Bay and Ipswich Bay between 2010–2012 and Je↵reys Ledge between426

2014–2015 in order to test the performance of the DSTs and validate the geolocation method-427

ology. Geolocation using the revised HGT were performed on tag-recorded data from these428

deployments, in which release and recapture locations were used without uncertainty. Daily429

location estimations in the most probable track were compared with the known mooring430

locations. The most probable track estimations for the 14 mooring DST deployments were431

close to their deployment locations. The RMSE of the daily location estimation from all432
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mooring tags was 11.07 km and the error range was 0.14–25.51 km (Table 3a). The median433

geolocation error for all mooring tags was 4.93 km. This represents a significant improvement434

over the error of 33.94 km found using the original HGT (Table 3a, 3b). Tag #73 was the435

best performing deployment (Fig. 6a) with a median daily location error of 1.86 km, whereas436

tag no. 71 (o↵ Provincetown, Cape Cod) was the worst performing deployment (Fig. 6c) with437

a median daily location error of 23.10 km. Tag no. 87, for which the median error was 4.79438

km, was representative of the overall mooring tag deployments (median 4.93 km) (Fig. 6b).439

To assess the accuracy of the constructed probability density functions, mean normalized440

probability at known locations were calculated for each track to give a value between 0 and441

1, where 1 indicates that the probability density function most accurately estimates the442

known locations, and 0 indicates that the probability density function is unable to correctly443

estimate the known locations. The overall mean normalized probability at known locations444

for all mooring tags ranged from 0.30 – 1, with an average of 0.69. Compared with the445

same metric derived from the original HGT (0.06), this represents a significant improvement446

(Table 3a, 3b).447

High resolution positions of the double-electronic-tagged cod determined by acoustic448

receivers were compared to the same-day position estimates from the most probable track449

constructed by the revised HGT. To assess whether the revision to HGT improved geolocation450

results, acoustically detected location were also compared with position estimates using the451

original HGT with minimum changes only to enable the input of NECOFS bathymetry and452

tidal data. Most (217 out of 223, 97.3%) of the daily locations of the most probable track453

estimated by the revised HGT were within 42 km of the acoustically-detected locations454

(Fig. 7). The median geolocation error for the revised HGT was 6.45 km, which is an455
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improvement over the value of 34.80 km found using the original HGT (Table 3c, 3d,456

Supplementary Material Table S1). This reduction in error is essential for studying seasonal457

movement of cod in the Gulf of Maine, because all the double-electronic-tagged fish were458

recaptured within 82 km of their release location. The average normalized probability at the459

acoustically-detected locations was 0.47 for the revised HGT, much higher than that of the460

original HGT, 0.06 (Table 3c, 3d). Although the median geolocation error was less in the461

modified model, in rare cases (6 out of 223 estimates, <3%) errors in such estimates were462

found to be between 33–62 km greater than that of the original HGT. These six estimates463

also had the greatest error and were all from fish no. 22 which had the longest duration (212464

d) (Table 4).465

In the simulated track experiments, the most probable track output was compared with466

the simulated tracks. The mean and median location estimation error for the simulated467

tracks were 92.40 km and 69.46 km, respectively. The mean normalized probability at468

known locations was 0.39. A breakdown of the daily location errors for all simulated tracks469

indicated variation of location errors among seasons, geographical regions, and numbers of470

days between release and recapture (Fig. 8). Across all seasons, the median error increased471

when fish were at liberty for a longer period. This finding is consistent with results from472

the double-electronic-tagging experiments which found that geolocation errors for cod were473

greater for cod that spent longer time in the water. For simulated runs with duration of 40474

d and 120 d, the median error during winter was greater than during summer. Estimated475

location errors of the Gulf of Maine tracks were slightly greater than those of the Georges476

Bank tracks in general, with the 120 d tracks released in winter as exceptions.477
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Geolocation of the double-electronic-tagged cod478

The revised HGT was applied to the double-electronic-tagged fish (n=10). All ten cod479

were recaptured in the Gulf of Maine and within 82 km of their release position in the cod480

conservation zone (Table 4, Fig. 9), with the average number of days at large being 79.5481

days. The distance between the reported and estimated recapture locations were all within482

the uncertainty radius around the reported recapture locations except fish no. 22, which483

exceeded its uncertainty radius of 30 km by 4.3 km. Five fish (nos. 7, 8, 11, 12, and 13) moved484

east towards Stellwagen Bank, with two (nos. 12 and 13) exhibiting a stationary period in485

southern Massachusetts Bay classified as mostly low activity days (Fig. 10). Geolocation486

results demonstrated that cod moved o↵shore after spawning. Most cod remained within487

the western Gulf of Maine. However, two fish (nos. 18 and 22) moved to the southeast towards488

the Great South Channel and Georges Bank before migrating north and being recaptured489

in the Gulf of Maine. These movements represent migrations across the current boundary490

between the Gulf of Maine and Georges Bank management units (see NEFSC 2013).491

Cod no. 16 generally stayed in the cod conservation zone throughout its 27 days at liberty,492

corroborated by acoustic receiver detections being received on each day when it was at large493

with the exception of 21 June 2010. No. 17 traveled north towards Ipswich Bay, which is a494

major cod spawning ground during the spring. No. 24 moved to Stellwagen Bank and was495

later recaptured on southern Je↵reys Ledge.496
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Discussion497

Geolocation methods498

The geolocation method presented in this paper is a direct development from the HMM499

geolocation method presented by Pedersen et al. (2008) and implemented in HGT. New500

elements developed in the present geolocation method and implemented into the revised501

HGT have improved model performance for our application. These include the exclusion of502

unlikely locations based on tidal characteristics, the utilization of depth and temperature and503

the tidal-based activity classification for the likelihood model, improved land treatment in504

the behavior model, and a method to constrain the end point of the most probable track to be505

near the reported recapture location. The introduction of the moderate activity enhances the506

utility of vertical behavioral information. Validation in activity classification using the VPS507

occupancy utilization data links the horizontal and vertical movement of the fish. Although508

Hobson et al. (2009) concludes that there is no decisive connection from vertical behavior509

pattern of cod to its horizontal migration or residence behavior, our validation results indicate510

a pattern that cod tend to utilize larger areas when greater vertical activity is observed, which511

justifies the use of multiple values of the di↵usivity coe�cient D corresponding to di↵erent512

activity levels in the behavior model. One caveat of this validation is that such justification is513

based on data collected from a specific behavior period because the double-electronic-tagged514

cod were all in spawning condition, which may be a period when cod are more sedentary than515

they are at other times of the year. Also worth noting is that our behavior classifications are516

based on available behavioral observations and relevant to Gulf of Maine cod, whereas cod517

in other regions may exhibit di↵erent behavior. Secondly, the exclusion of unlikely locations518
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based on tidal characteristics was inspired by fully tidal-based methods (e.g. Hunter et al.519

2003, 2004; Gröger et al. 2007; Pedersen et al. 2008), which do not perform well in regions520

where tidal variation is small. Exploratory experiments in which tidal characteristics were521

incorporated in the joint likelihood distribution in a similar way with depth and temperature522

indicated that such inclusion misleads the location estimates in the western Gulf of Maine.523

By excluding unlikely locations, the accuracy of the likelihood model and the computational524

e�ciency were improved. Therefore, this tidal exclusion scheme is the primary reason that525

the revised HGT demonstrated better performance over the original HGT in the mooring526

and double-tagging validation experiments. In the original HGT, the land treatment in the527

behavior model allowed unrealistic crossing of peninsulas and other promontories. Pedersen528

et al. (2011b) employed a finite element method to solve the nonlinear Bayesian fish tracking529

problem on domains with irregular geometry, which is an ideal method for land avoidance530

in terms of accuracy, but at the expense of computational e�ciency. In our modification531

to the HGT we focused on using an approach that was straightforward to implement to532

improve the land treatment scheme without significantly increasing the computational load.533

Our modification eliminates the possibility of fish crossing over land. Lastly, confining the534

estimated recapture location of the most probable track near the reported recapture location535

resulted in a track that is more realistic.536

Accuracy of geolocation estimations537

This validation study is a comprehensive e↵ort for DST-based geolocation methods applied538

to demersal fishes. Model validation experiments using fixed mooring tags and double-539
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electronic-tagged cod indicated that the revised HGT produces more accurate results than540

previous tidal- or light-based methods using archival tags. The estimated error using revised541

HGT for mooring tags at fixed locations was between 0.14 and 25.51 km, with a mean542

value of 11.07 km (Table 3a, Supplementary Material Table S1). Hunter et al. (2003) and543

Thorsteinsson et al. (2012) used mooring tags fixed at known locations to validate their544

tidal-based method and their reported average error was 15.7 ± 3.5 km and 18.91 km,545

respectively. The root mean square error (RMSE) of our method for double-electronic-546

tagged fish was 21.87 km (Table 3b). Double-tagging studies of sharks (Teo et al. 2004;547

Winship et al. 2012) found errors > 0.5� (approximately equal to 55 km), but the error is548

likely greater for sharks since they tend to have higher horizontal speeds and travel more549

frequently than groundfish. Righton and Mills (2008) reported that the average error for550

their DST-based method using five 50-d simulated tracks determined by the most likely path551

using a highest total score approach was between 37 and 69 km. The median error of our552

40-d simulated track runs, which was determined by the most probable track using similar553

criteria maximizing the overall score, was 29.16 km.554

Comparison of the geolocation results of the ten double-electronic-tagged cod using re-555

vised HGT with the statistical area assignment for the same cod (based on the common556

numbering listed in the “DMF Fish ID” column in Table 4) presented in Zemeckis (2016)557

and Zemeckis et al. (2017) indicated that the revised HGT was capable of providing superior558

geolocation estimates compared to a coarse scale algorithmic geolocation method. Although559

the two methods share the same likelihood model, by introducing HMM in the geolocation560

method, drawbacks in the previous algorithmic method that lead to occasionally erroneous561

position assignments were overcome in the revised HGT.562
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Geolocation of stationary tags indicated that the current method is able to provide highly563

accurate location estimates for fixed-location objects. Errors in archival tag measurements564

and depth and temperature data derived from the oceanographic model are potential sources565

of error in geolocation estimates of the fixed-location tags. In comparison, location estimation566

error was nearly doubled for the double-tagging experiment of free-swimming cod (Table 3).567

Such comparison indicates that the current behavior model may be another significant source568

of location error in addition to that induced by tag data and the oceanographic model569

errors; the current behavior model is likely the barrier to achieving highly accurate location570

estimates for free-swimming fish. A behavior model that more accurately describes the571

spatial movements of the fish species in question is expected to improve the accuracy of572

geolocation estimates. We assumed fish movement could be modeled with a random walk.573

The use of alternative schemes such as Brownian motion or Lévy flight have been shown to574

have a negligible e↵ect on geolocation when compared with the random walk (Thygesen and575

Nielsen 2009). Moreover, the underlying behavior state time series of a fish can be estimated576

more accurately using a separate or extended state space model framework (Patterson et al.577

2009, 2016). Pedersen et al. (2011a) present a similar HMM framework which estimates578

behavior and movement at the same time. (Pedersen et al. 2011a) also includes a model579

selection scheme for the behavior model with a candidate set of models with di↵erent set of580

parameters including advection, which is not considered in the current method. However, the581

implementation of such behavior state schemes will increase the mathematical complexity582

and the computational intensity of the geolocation model. When considering alternative583

behavior models in future e↵orts, both the computational e�ciency and the accuracy of the584

geolocation should be considered.585
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Geolocation results of stationary tags (Fig. 6) also suggest that spatially-varying sys-586

tematic biases may exist in geolocation estimates. Such biases may be caused by local587

bathymetry and oceanographic conditions that result in similar temperature and depth over588

a broader area. Similar phenomenon was reported for other telemetry techniques for estimat-589

ing fish locations and can be potentially corrected by deploying stationary tags throughout590

the study area (Charles et al. 2016). To better understand the e↵ect of systematic biases591

in geolocation estimates, fixed-location mooring deployments are recommended for future592

geolocation tagging projects.593

Simulated track experiment results suggested that geolocation estimates using revised594

HGT were more accurate for fish at liberty for fewer days, tagged during summer when595

spatial variation of bottom temperature is relatively large, and released in regions where596

bathymetric variation is large. The seasonality of geolocation accuracy was similar to the597

conclusions made by Righton and Mills (2008). These findings may provide guidance for598

future geolocation tagging to help achieve more accurate location estimates.599

Exploratory analyses showed that geolocation estimates of the simulated tracks are more600

accurate using the original HGT compared with those of the present work. This finding601

is intuitive given the inherent di↵erences between the two approaches. In these simulated602

tracks, the tidal signal is derived directly from the NECOFS database and thus the tidal603

model is e↵ectively without error. In contrast to the revised HGT which employs the tidal604

signal for the purpose of exclusion, the original HGT incorporates the spatial variation605

of the tidal signal in the geolocation process and thus is able to take advantage of the606

perfect fit between the model and tag data in the simulations. With real tag data and an607

imperfect tidal database, attempts to incorporate directly the tidal information can have an608
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adverse e↵ect on the geolocation accuracy (Le Bris et al. 2013b), as demonstrated in the609

aforementioned double-electronic-tagged experiments. Nonetheless, the original HGT may610

show good performance in areas where the variation in the spatial tidal characteristics is611

significant compared to errors associated with tag measurement and tidal database, such as612

the North Sea.613

Applications614

Results of this work may have implications for the regional fishery management of cod. The615

residency exhibited in geolocation estimates of eight double-electronic-tagged cod (nos. 7, 8,616

11, 12, 13, 16, 17, and 24) is similar to findings from previous conventional tagging studies617

(Hunt et al. 1999; Tallack 2011; Loehrke 2013) which classified cod in the Gulf of Maine as618

sedentary (Howell et al. 2008). However, such agreement may be a result of limited DST619

durations (<3 months) and limitations of conventional tagging comparing only release and620

recapture locations, both limitations tend to underestimate the horizontal activity of cod.621

Moreover, geolocation estimates of the other two double-electronic-tagged cod (nos. 18 and622

22) indicate movements across the current management unit boundary between the Gulf of623

Maine and Georges Bank management units, similar to the results of Gröger et al. (2007).624

Such movements would not have been observed with conventional tagging methods because625

these cod were released and recaptured in the same management unit. Results from further626

application of the geolocation method to available DST tag data of cod o↵ New England627

may have important implications for future stock identification regarding the delineation of628

management unit boundaries.629
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The HMM-based geolocation method presented in this work is expected to be applicable630

to other demersal groundfish species. For example, within the northeast U.S. region alone,631

DSTs have been used to study multiple demersal species (e.g., yellowtail flounder, Cadrin632

and Westwood 2004; monkfish, Grabowski et al. 2013; summer flounder, Henderson and633

Fabrizio 2014; winter flounder, Coleman 2015; black sea bass, Moser and Shepherd 2009;634

Atlantic halibut, Kanwit et al. 2008). The lack of access to validated geolocation methods635

creates barriers to the process of deriving reliable movement information from the tag data.636

The current study provides a geolocation method that would be applicable to these other637

datasets, thereby breaking some of these barriers.638

Global or regional oceanographic data that are relevant to the current HMM geolocation639

method, such as temperature, tides, and bathymetry, are readily available, which enables640

the applicability of the current HMM geolocation method to other regions. The Oregon641

State University Tidal Inversion Software (OTIS) and the associated MATLAB Tidal Model642

Driver toolbox (Egbert and Erofeeva 2002) are capable of providing global tidal harmonics643

data. Databases of ocean general circulation model (OGCM) output typically contain 4-644

dimensional sea water temperature. A review of some regional and global data products,645

including model descriptions and how to obtain model outputs, was given by Potemra (2012).646

For better accuracy of the geolocation estimates, the spatial resolution of such environmental647

data needs to be higher than the estimated location error scale.648

We implemented an HMM-based geolocation model for Atlantic cod in the Gulf of Maine.649

The model framework utilizes temperature and depth data from DSTs for location estima-650

tion, and tidal data for exclusion of unlikely locations. A tidal-based daily activity level651

classification scheme was implemented to improve the accuracy of the likelihood distribution652
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and determine the behavior states. Comprehensive validation experiments were performed653

on stationary mooring tags, double-electronic-tagged fish, and simulated tracks. Validation654

results suggest good performance of the revised geolocation model and improvements in655

performance over the original approach. This method could be applied to other demersal656

groundfish species, and is relevant to future stock identification and fishery management.657
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Figure captions890

Figure 1 (a)Model domain, horizontal mesh, and bathymetry (m) of the North-891

east Coastal Ocean Forecasting System (NECOFS). (b) Map of west-892

ern Gulf of Maine, with the acoustic receiver arrays (inset) deployed893

within the Spring Cod Conservation Zone894

Figure 2 Examples of the three activity levels identified in data from the895

archival data storage tags using the tidal fitting algorithm: a) low896

activity, b) moderate activity, and c) high activity. The shaded areas897

represent the 13 h window used to identify low activity periods and898

the 5 h window used to identify moderate activity periods.899

Figure 3 Example of the likelihood functions based on temperature and depth900

[L
dt

(x̂)] and modified with tidal exclusion [L(x̂)] for a given day.901

Figure 4 Example of simulated tracks in the Gulf of Maine (GoM) and Georges902

Bank (GB) with duration of 40 (yellow), 120 (yellow and red), and903

360 (yellow, red, and blue) days.904

Figure 5 Areas of daily 95% utilization distribution determined from acoustic905

array detection of the high, moderate, and low activity levels deter-906

mined by the likelihood model. Box plots show median values (red907

horizontal line), 25% and 75% percentile values (box outline), and908

the highest and lowest value within 1.5 times the interquartile range909

(whiskers).910
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Figure 6 Actual (star) and estimated (dot) locations of mooring tag deploy-911

ments for tags a) #73; b) #84; and c) #71, in order of increasing912

location error.913

Figure 7 Locations of the 10 double-electronic-tagged cod detected by the914

acoustic receivers (blue triangles) and the corresponding same-day915

estimates constructed by the revised (red dots) and original (open916

circles) HMM Geolocation Toolbox.917

Figure 8 Daily location estimation error for the simulated experiments. Box918

plots show median values (horizontal line), 25% and 75% percentile919

values (box outline), outliers (diamonds), and the highest and lowest920

value within 1.5 times the interquartile range (whiskers).921

Figure 9 The most probable track and the associated total posterior distribu-922

tion for the double-electronic-tagged cod. The Spring Cod Conserva-923

tion Zone (SCCZ, Fig. 1) is also shown (red rectangle).924

Figure 10 Depth (blue line) and temperature (red line) time series recorded by925

DST and the activity classification (shading color, dark green: low,926

light green: moderate, white: high) for double-electronic-tagged cod927

nos. 12 and 13.928
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Table captions929

Table 1 Comparisons of bottom temperature between NECOFS FVCOM pre-930

dictions and survey measurements. NEFSC: NOAA Northeast Fish-931

eries Science Center, MADMF: Massachusetts Division of Marine932

Fisheries, SMAST: School for Marine Science and Technology, UMass933

Dartmouth, IBS: Industry-Based Surveys.934

Table 2 Experimental setup for the simulated tracks. GoM=Gulf of Maine;935

GB=Georges Bank; Summer=Aug 10, 2012; Winter=Jan 12, 2013936

Table 3 Validation results for mooring tags and double-electronic-tagged cod.937

Table 4 Summary of tagging and geolocation data for 10 double-electronic-938

tagged Atlantic cod. All tagged cod were released at 42.52� N, 70.70�939

W. MPT: most probable track940
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Table 1

Survey Time Number of measurements
Model-observation di↵erence (�C)

Mean S.D. RMSE Min Max

NEFSC Bottom Trawl Survey 2009, 2014–2015 1 478 0.13 1.79 1.80 -6.58 7.53
NEFSC Shrimp Survey 2009 – 2013 361 -0.26 0.97 1.01 -4.30 2.05
MADMF Bottom Trawl Survey 2010 – 2015 1 299 -0.21 1.72 1.73 -7.44 4.66
SMAST Study Fleet 2003 – 2007 17 009 0.14 1.37 1.38 -10.73 8.84
SMAST 2010 Winter Flounder IBS 2010 336 0.62 1.57 1.68 -4.69 5.33
SMAST 2011 Winter Flounder IBS 2011 257 0.99 3.08 3.23 -4.77 6.32
SMAST 2012 Winter Flounder IBS 2012 159 -0.99 1.33 1.66 -5.12 0.90
SMAST Cod IBS 2003 – 2007 2 310 -0.43 0.98 1.07 -5.68 2.64
SMAST Video Survey 2013 – 2015 6 292 -0.40 2.09 2.12 -7.02 7.80

Total 29 501 -0.04 1.61 1.61 -10.73 8.84
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Table 2

Set Tag No. Region Season of release Duration in water (d)

1 1–5 GoM Summer 40
2 6–10 GoM Summer 120
3 11–15 GoM Summer 360
4 16–20 GoM Winter 40
5 21–25 GoM Winter 120
6 26–30 GB Summer 40
7 31–35 GB Summer 120
8 36–40 GB Summer 360
9 41–45 GB Winter 40
10 46–50 GB Winter 120
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